# The Hodoscopes 

Brad Wogsland<br>University of Tennessee<br>visiting at<br><br>Stanford Linear accelerator Center

## Outline

- Role of the hodoscopes in the beam tests
- The 1st hodoscope
- Pb glass cuts
- Single finger cuts
- Pedestal cuts
- The second hodoscope
- Pb glass cuts
- Pedestal cuts
- Finger cuts
- Correlated cuts
- Conclusions


## The DIRC prototype beamtests

- The old hodoscope is located prior to the prototype in the beamline to facilitate steering
- The second hodoscope was added July 2006 to perhaps help eliminate background



## The First Hodoscope

## The 1st Hodoscope

- 16 horizontal and 16 vertical fingers
- Fibers are 2 mm by 2 mm square and wrapped in foil
- Foil creates gaps $\sim 133 \mu \mathrm{~m}$ between horizontal fibers, and $\sim 200 \mu \mathrm{~m}$ between the vertical ones
- Read out via two MaPMTs


## A Typical Hodoscope ADC distribution



Red is the uncut signal, Blue is the signal after applying a cut, Light Blue is a second cut

## The Pb glass counter



The first cut was based on one hit in the Pb glass counter.

Bradley Wogsland
The hodoscopes, September 2006

## 1st hodoscope: Pb glass cut on horizontal fingers












Not much change visible...

## 1st hodoscope: Pb glass cut on vertical fingers



Not much change visible...

## 1st hodoscope: single finger cuts

- Cuts accomplished by requiring that the other 15 fingers have signals below the pedestal values we have assigned to each finger using Pilas laser


Bradley Wogsland


## 1st hodoscope: single finger horizontal cuts



## 1st hodoscope: single finger vertical cuts





Bradley Wogsland

## 1st hodoscope: single finger cuts

- Eliminated the shoulders in the plots which are believed to be background since they appear in the outer fingers as well.
- Nevertheless, a thorough examination of shoulder events in the prototype still needs to be done.


## The Second Hodoscope

## The 2nd Hodoscope

- 16 horizontal and 16 vertical fingers
- Fibers are 2 mm by 2 mm square and wrapped in foil
- Foil creates gaps $\sim 77 \mu \mathrm{~m}$ between horizontal fibers, and $\sim 64 \mu \mathrm{~m}$ between the vertical ones
- Read out via single Hamamatsu 8X8 H-8500 MaPMT


## The Pb glass counter



Again the first cut was based on one hit in the Pb glass counter.

## Bradley Wogsland



## 2nd hodoscope:

## Pb glass vertical cuts



Bradley Wogsland
The hodoscopes, September 2006

## 2nd hodoscope: finger cuts

- Cuts accomplished by requiring that the other 15 fingers have signals below the pedestal values we have assigned to each finger eliminated all of the signal above the pedestals



## 2nd hodoscope: 3 finger cuts

- Cuts eliminating constraints on a finger's two nearest neighbors (3 finger cuts) achieved similar results



## 2nd hodoscope: 5 finger cuts

- Finally eliminating constraints on a finger's nextnearest neighbor as well (5 finger cuts) let some signal through



## 2nd hodoscope:

 horizontal 5 finger cuts

Bradley Wogsland

## 2nd hodoscope: vertical 5 finger cuts









## 2nd hodoscope: pedestal finger cuts

- From these plots it was concluded that the signal in the second hodoscope was too spread out to get meaningful results from pedestal finger cuts like in the first hodoscope
- Higher pedestals where the next idea...


## The 2nd Hodoscope - Valley cuts



Red is the uncut signal, Blue is the signal after applying a cut, Light Blue is a second cut

## 2nd hodoscope:

 horizontal 1 finger valley cuts

Bradley Wogsland

## 2nd hodoscope: vertical 1 finger valley cuts



Bradley Wogsland

## 2nd hodoscope:

 horizontal 3 finger valley cuts

Bradley Wogsland

# 2nd hodoscope: vertical 3 finger valley cuts 



Bradley Wogsland

## 2nd hodoscope:

 horizontal 5 finger valley cuts

Bradley Wogsland

## 2nd hodoscope: vertical 5 finger valley cuts



Bradley Wogsland

## 2nd hodoscope: correlated cuts

- Cuts accomplished by correlation with a good signal in the first hodoscope
- "good signal" means that one and only one of the central 4 fingers in both the horizontal and vertical directions was hit



# 2nd hodoscope: horizontal fingers with central hodoscope 1 cut 



Bradley Wogsland

## 2nd hodoscope: vertical fingers with central hodoscope 1 cut



Bradley Wogsland

## 2nd Hodoscope: shoulders

- When a single finger is cut to be above the pedestal or valley, it lowers the overall signal in the other fingers.
- However, using the 1 finger valley cut described earlier gives a clue to the nature of the shoulders...


## 2nd Hodoscope: shoulders




## Conclusions

- The 1 st hodoscope is understood well enough to cut out the pedestals and shoulders which correspond to background
- Still don't understand the genesis of the shoulders
- The 2nd hodoscope is a somewhat messier affair
- Strict pedestal cuts eliminate the signal
- Valley cuts \& cuts correlated to the signal in the first hodoscope lower the overall signal without cleaning it up


## Questions?

